> EGD@ %bjbjFF
.:,,<&FFFFF! ! ! prrrrrr$R/B! ! ! ! ! FF! FFp! p:,`F:0Y_
"
p0Rq%
q`q`! ! ! ! ! ! ! &&
A Book Review of M.A. Goberna, published in
Newsletter of the European Mathematical Society No. 61, September 2006, 41-42.
J. Brinkhuis and V. Tikhomirov: Optimization: Insights and Applications, Princeton Series in Applied Mathematics, Princeton University Press, Princeton-Oxford, 2005, 658 pp., sterling 51.95/hbk, ISBN 0-691-10287-0, ISBN 0-691-10287-2
This book provides an excellent overview of the theory, methods and applications of continuous optimization problems. More in detail, the book deals with one-dimensional optimization (Chapter 1), unconstrained optimization (Chapter 2), optimization under equality constraints (Chapter 3), optimization under inequality constraints (Chapter 4), linear programming (Chapter 6), convex optimization (Chapter 7), mixed smooth-convex optimization (Chapter 10), dynamic programming in discrete time (Chapter 11), and dynamic optimization in continuous time (Chapter 12). The following four-step procedure, conveniently adapted to each of the above families of continuous optimization problems, is proposed for computing an optimal solution of those problems which are analytically solvable (i.e., by a formula):
Establish the existence of global solutions.
Write down the first order necessary conditions.
Investigate these conditions.
Write down the conclusions.
The main tools in Step 1 are the classical Weierstrass theorem (applied to some bounded non-empty sublevel set) and its extension to coercive functions. Step 2 is based upon the so-called Fermat-Lagrange principle (i.e., conditions of multiplier type), for finite-dimensional optimization problems, and the Pontryagin principle, for dynamic optimization problems. The particular versions of the Fermat-Lagrange principle for the different classes of mathematical programming problems considered in this book (all of them involving differentiable and/or convex functions, i.e., functions admitting linear approximations) are obtained via the tangent space theorem (closely related with the implicit function theorem), for smooth problems, and by means of the supporting hyperplane theorem (related with the separation theorem), in the case of convex problems. Typically, Step 3 provides a list of candidates and Step 1 allows the identification of optimal solutions among them, if the given problem is solvable. The second order conditions in Chapter 5 give some insight although they do not play a crucial role in this approach because they can seldom be checked in practice. A similar point of view is adopted regarding the constraint qualifications.
Concerning those optimization problems which cannot be solved analytically, but admit a convex reformulation, the authors propose to solve them by means of interior point methods (as the self-concordant barrier method) or cutting plane methods (as the ellipsoid method). These and other complementary methods (e.g., line search methods and linear optimization methods) are described in Chapters 6 and 7.
Each chapter contains a rich list of selected applications (many of them unusual in the standard textbooks) that are presented as either motivating examples or as complementary exercises. Classical optimization problems (most of them relative to geometric objects), physical laws and economic models usually admit analytic solution, whereas real life (or pragmatic) applications may require the use of numerical methods. The solutions are given in Appendix H. Chapters 8 and 9 are devoted to economic and mathematical applications, many of them really surprising.
The previous description of the content of the book suggests that it is one more of the many good textbooks that have been written on continuous optimization. Nevertheless, this book presents the following novel features:
The presentation of the materials is as friendly, simple and suggestive as possible, including many illustrative examples and historical notes about results, methods and applications. These notes show important contributions of Russian mathematicians to optimization and related topics that have been ignored up to now in the occidental academic world.
The book is totally self-contained, although some familiarity with basic calculus and algebra could help the reader. The first contact with each topic is intuitive, showing the geometrical meaning of concepts (including those of basic calculus), results and numerical methods by means of suitable pictures. For instance, all the main ideas in the book are sketched in Chapter 1, about one-dimensional optimization, which could be read by college students. Subsection 1.5.1, entitled All methods of continuous optimization in a nutshell, is an excellent introduction to this topic. In order to understand the basic proofs and to be able to obtain analytic solutions, the reader must recall some elements of linear algebra, real analysis and continuity (Weierstrass theorem) that can be found in Appendices A, B and C, respectively.
The basic part of the book is written in a personal way, emphasizing the underlying ideas that are usually hidden behind the technical details. For instance, in the authors opinion, the secret power of the Lagrange multiplier method consists in reversing the order of the two tasks, elimination and differentiation, and not in the use of multipliers (as many experts think). In the same vein, personal anecdotes are also reported, e.g., mention of some open problems, most of them extending classical optimization problems, that they posed in their lectures and were brilliantly solved by their students.
The book provides new simple proofs of important results on optimization theory (as the Pontryagin principle in Appendix G) and also results on other mathematical fields that can be derived from the optimization theory (as the fundamental theorem of algebra, in Chapter 2). Most formal proofs are confined to the last two appendices, which are written in a fully analytic style.
This book can be used for different courses on continuous optimization, from introductory to advanced, for any field for which optimization is relevant: mathematics, engineering, economics, physics, etc. The introduction of each chapter describes a royal road containing the essential tools for problem solving. Examples of possible courses based on materials contained in this textbook are:
Basic optimization course: Chapters 1, 2, 3, 4, and Appendix D (Crash course on problem solving).
Intermediate optimization course: Chapters 5, 6, 7, 10, and Appendices E and F.
Advanced-course on the applications of optimization: Chapters 8 and 9.
Advanced-course on dynamic optimization: Chapters 11 and 12, and Appendix G.
The website of the first author (people.few.eur.nl/brinkhuis) contains references to implementations of optimization algorithms and a list of corrections allowing the repair of the few shortcomings that are unavoidable in a first edition despite of its careful production. In my opinion, this stimulating textbook will be for the teaching of optimization what Spivak's "Calculus" was for the teaching of this subject (and even real analysis) in the 70s.
Miguel A. Goberna got his PhD in 1979 from the Universidad de Valencia and he is currently Professor at the Universidad de Alicante (Spain). He has published more than 60 research papers on optimization and related topics (inequality systems, convexity and set-valued anlisis) and several books, as Linear Semi-Infinite Optimization, J. Wiley, 1998 (with M.A. Lpez), Semi-Infinite Programming: Recent Advances, Kluwer, 2001 (with M.A. Lpez, Eds.), and Linear Optimization, McGraw-Hill, 2004 (in Spanish, with V. Jornet and R. Puente).
{|} # , f g q
+
|anw%
2
3
7
ļļ}u}u}}m}m}meueh3fimH sH h
9mH sH haP mH sH h&5mH sH hQ5kmH sH hu}!mH sH h6MmH sH h=ImH sH h#h#mH sH hihvFz6mH sH hihV6hihV6mH sH hvFzhvFz5mH sH h5mH sH hhmH sH hmH sH hlmH sH $-|}g
%
P) !e!!!##gd[#gd
Jw
&Fgd&!gdu}!
&Fgdu}!%7
8
>
B
F
P
d
lm`o)4aow 6GOS>EYpxȸȰȘȘȐhmH sH hWmH sH hu}!mH sH h XrmH sH hnmH sH hQ5kmH sH h
9mH sH h
NmH sH hmH sH hmH sH hmH sH haP mH sH h3fimH sH hsmH sH 6xz YZh.3ofg21BxȰȰhXmH sH hfmH sH hkmH sH h\mH sH h&!mH sH hHmH sH h$mH sH hdmH sH hWmH sH hpmH sH hg,mH sH h6MmH sH h XrmH sH hkemH sH h
9mH sH h
NmH sH h'mH sH .'(8SU'NOPky#1[\X訠ذ耰xxhHmH sH h>jmH sH hiCmH sH hokmH sH hfmH sH hs mH sH hdmH sH h&!mH sH hkemH sH hXhX6mH sH hXhN6mH sH h4ImH sH hXmH sH hNmH sH hg,mH sH hVQmH sH .Xq()*-CM " # $ - . / 9 : G M a b c Žwh#mH sH h[#hHmH sH h[#h[#mH sH h[#mH sH hbmH sH hHmH sH hq
mH sH h6MmH sH h
JwmH sH h#h#mH sH hU)mH sH h$xmH sH hiCmH sH h>jmH sH hHmH sH himH sH - !!"!/!5!7!d!e!m!n!x!|!!!!!!!!"""5"6"7">"?"@"}""""""#
#㻳~vnnf^hq
mH sH hvmH sH hAmH sH hrqtmH sH hrqtCJOJQJ^JaJh6MCJOJQJ^JaJ h Lh LCJOJQJ^JaJh6MmH sH h LmH sH hiCmH sH homH sH hHmH sH h
JwmH sH himH sH hU)mH sH h>jmH sH hoh>j6mH sH $
#
#####2#3#|#}########$
%1%[%%%%%%ʾhrqthhrqthrqthrqt6hrqthrqth[#hYfh[#h[#h[#mH sH hYfmH sH h
JwmH sH hU)mH sH #%%%gd[# 7$8$H$gdrqt,1h. A!"#$%@@@NormalCJ_HaJmH
sH
tH
NANFuente de prrafo predeter.RiRTabla normal4
l4a,k, Sin listaLLaP Texto de globoCJOJQJ^JaJ:-|}g %
P)e00000x0 0 0 0 00000 00 0 0 00000000000x0g %
Pe0P00h 0h 0 0 0^>00\>00L^>00^>000^>00@0^>00\>00\>00\>00^>00\>00^~00^>007
xX
#%#%%8@0(
B
S ?*,,4;>P[Xb&037;>?BCKLNO[\`aiksuxy|}
$%'(+EJT]cgkstz{}~
#$'15?JLRS[]ckops|-3}d ) ) 4 a o w
gc""mn7>?@@
*,7RdF*%sj^`o(.
^`hH.
pLp^p`LhH.
@@^@`hH.
^`hH.
L^`LhH.
^`hH.
^`hH.
PLP^P`LhH.h
^`hH.h
^`hH.h
pLp^p`LhH.h
@@^@`hH.h
^`hH.h
L^`LhH.h
^`hH.h
^`hH.h
PLP^P`LhH.7R*%s
>=?aP q
2keqYf#\u}!g,R.
94IJ LN
Nb3fi>jQ5kokn Xrrqt
JwvFzl(fWVQU)6M&!kviA$xiCVHds [#=IsXoH&5p'$W@,,A,,P@UnknownGz Times New Roman5Symbol3&z Arial5&zaTahoma"q£FVFD5D524d3QH)?#~Preliminary review / Publisher's description: This self-contained textbook is an informal introduction to optimization throughmiguelamiguelaOh+'0(4DP\l |
Preliminary review / Publisher's description: This self-contained textbook is an informal introduction to optimization throughrelmiguelaiguiguNormalmiguela24uMicrosoft Word 10.0@_@[@R@[O@CD՜.+,0|hp
[Universidad de Alicante5
Preliminary review / Publisher's description: This self-contained textbook is an informal introduction to optimization throughTtulo
!"#$%'()*+,-./012356789:;=>?@ABCFRoot Entry F g_HData
1Table&WordDocument.:SummaryInformation(4DocumentSummaryInformation8<CompObjk
FDocumento Microsoft Word
MSWordDocWord.Document.89q